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ABSTRACT

=~ It is common to have a hierarchical communication network in a mulitary environ-

ment. [t we consider each node in the network as a computer site then we have a hi-

erarchical computer network. In a hierarchical computer network, because the need of

resource sharing, we now have a distributed processing svstem. In this svstem a parent
node may have duplicate records of all its children. Anv update of a record has to be
reflected in other nodes that keep the duplicates.  We need a concurrency control
mechanism to guarantee the integrity of the distributed database and the serializability

of concurrent updates.

P
i

This paper 1s the first to investigate the performance in hierarchical networks of two
widely-cited concurrency control mechanisms, locking based and timestamp. Various
parameters are investigated in our research: number of nodes, level of network. trans-

action arrival rates, and message transmission speeds, etc. We present the problem, ex-

plain the algorithms used in our simulation, analyze the results, and discuss the findings. (
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I. INTRODUCTION

A. BACKGROUND

In the course of the development of computer and communication technology se-
veral important technical achievements have been introduced. One of the most signif-
icant techniques among these is distributed data processing. A distributed svstem
consists of a set of computers located in different sites connected by a communication
network. Programs are running on each of these computers and the programs access
local or remote resources, such as a database.

The major advantage of a distributed svstem is to provide low-cost availubility of
resources of the svstem by localizing accesses and providing insulation against fatlures
of individuual components. Since many users cin be concurrently accessing the svstem,
it 1s essential that a distributed svstem should provide a high Jegree of concurrency.
Due to the requirement of data sharing, the distributed system may be designed with
more than one copy of the same data in different locutions. This partitioned and repli-
cated distributed database requires svnchronization to control the concurrent multiple
updates and maintain its consistency. This svnchronization is called the concurrency
control algorithm.

There are two types of concurrency control approaches, local concurrent control
and global concurrency control. The local concurrent control mechanism is developed
to guarantee that a step of a transaction is executed as a single atomic operation at an
individual node. The global concurrency control mechanism which is also called the
update algorithm, controls the transactions between two different nodes [Ref. 1], Many
algorithms have been proposed in this field [Ref. 1] [Ref. 2] [Ref. 3] These algorithms

are usually complex and hard to understand. However most of the work on concurrency




control has concentrated on the development of new algorithms, and not as much at-
tention has been given to the performance evaluation of the algorithms. Also, most
performance studies are done in general network structure [Ref. 1] [Ref. 2] [Ref. 4]. For
military scttings, the line of authority is hierarchical, therefore military svstems call for
hierarchical computer networks in a distributed svstem environment. System managers
or designers usually like to investigate performance differences and sometimes like to
dvnamically adapt the system to the transaction pattern. Therefore, it is important to
analyvze performance differences between different concurrency control algorithms for
hierarchical networks. This research is to report the performance analvsis of such net-

works.

B. DISTRIBUTED DATABASE

A distributed database system is hosted by collection of geographically separated
computers called sites. Each sites has a unique identifier, and the sites are interconnected
by a communications network. Sites communicate with each other by means of messages
sent over the network. Messages may be arbitrarily delaved in the network, but it is as-
sumed that all messages are eventually delivered.

The database consists of an unique set of entities, such as records or tiles, that are
uniquely named and that serve as indivisible units of access. An entitv is realized as one
or more data objects, cach of which is uniquely identified by an [entitv-name, site-
identifier] pair.

Replication of an entity occurs if it is represented by more than one object. Repli-
cation can result in improved performance if the cost of storing and maintaining (up-
dating) copies is less than the cost of access. Also replication can improve availability in
the sense that, if one site becomes inaccessible, then users mayv be able to access the data
at other site. In our model it 1s assumed that each entity is partially replicated which

means the entities are not replicated at all nodes but repheated at some nodes.




C. CONSISTENCY CONSTRAINTS

We would like to keep a database consistent. However, due to updating activity, the
consistency constraints must be temporally violated. Two levels of consistency can be
defined for multiple copies of data. Strong consistency is defined as the condition of
having all copies of the data updated at the same time. Strong consistency is very desir-
able becuse all copies of data have the same update status at any time, but this alwavs
entails a considerable delay in response time to process the update for all copies. This
1s because the update of all copies must be delaved to the time of the last update of
svstem.  Weak consistency is defined as the condition of having the various copies of
data converge to the same update status over time, but at anv instant of time some
copies may lag others in the number of updates processed. Delavs mn general will be re-
duced and more eflicient use of resources is possible. In a weak consistency svstem some
copies cf data will be more up-to-date than others [Ref. 3]. Most algorithms are devel-
oped under weak consistency constraints because of efliciency, and our simulation also

follow weak consistency constraints.

D. GENERAL DEFINITIONS

We now give four important definitions that we need in the following discussions.

1. Hierarchical distributed data base system: A svstem with the database dispersed
throughout a number of nodes, where each node can communicate in real time with
one or more subordinate nodes, but with only one superior node and with sutlicient
processing power at each node to manipulate the database.

2. Concurrency control: The mechanism of maintaining logical data consistency in
an environment of conter.iion among multiple update sources.

3. Node: Complete computer system at a single location.

4. Transaction: Set of actions which transform a databasc {rom one consistent state
into another consistent state [Ref. 3J.
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GENERAL ASSUMPTIONS

I'or our study we make the following assumptions:

The data bases are parually replicated in the svstem, which is more practical than
completely replicated databases.

Although update transactions may add or delete dutabase items, we consider the
totul number of data in databasc to be constant, that is, a static database.

All nodes have local concurrencv control. We are not concerned with local con-
currency control mechanism, but concentrate on the globul concurrency control
algorithms.

There is a communication system which allows anyv node to communicate with anv
other node.

No failures occur in the svstem, that is, the communication svstem never fuils to
debiver a message.

All trunsactions which are used for this study are update transactions.

There 1s no multiprocessing at cach node. The transactions which arrive at certain
nodes are served serially. Since most transactions are small, the schedule algorithm

in cach node should not have a noticeable effect on the response time and results
obtained with the model.




[I. CONCURRENCY CONTROL ALGORITHMS

Concurrency control is the activity of coordinating concurrent accesses to a duta-
base in a mult-user database management system. Concurrency control permits users
to access a database in a multiprogrammed fashion while preserving the illusion that
each user is executing alone on a dedicated system. The main technical difhiculty in
achieving this goal 1s decontfliction. Database update performed by one user must not
interfere with database retrievals and updates performed by another.  Although muany
algorithms have been proposed, most of them are a variation of two basic technigues,
Two-Phase Locking and Time-Stamp Ordering. Alternativelyv we can interpret these two
technique as centralized and distributed algorithms.  The best concurrency control al-
Zorithm for a particular application depends on the svstem parameters. We will discuss

these paraneters in Chapter 3.

A.  LOCKING-BASED CONCURRENCY CONTROL
Objects accessed by a transaction are locked in order to cnsure their inaccessibility
to other transactions while the database i1s temporarily in un inconsistent state. There

are three lock-releated actions on objects:

1. {T.Lock_X. <A >)denotes a request by transaction T for an exclusive lock on the
object < A > . The request 1s granted only when no other transaction is holding a
lock of anyv tvpe on object.

t9

(T. Lock_S, <A>) denotes a request by transaction T for a shared lock on the
object <A >. The request i1s granted only when no transaction is holding an ex-
clusive Jock on the object.

3. (T. Unlock <A>) denotes the release of anv lock by transaction T on the object
TA>.

A transaction is said to be well-formed if it reads an object only while it 1s holding
a shared or exclusive lock on the object and if writes an object only while it is holding

an exclusive lock on the object. Figure 1 illustrates well-formed transaction.




(T1. Lock_S. 2\
(T1. Read_object, )
(T1, Unlock, A\)
(T1, Lock_S. B)
(T1. Read_object. B)
(T1, Unlock, B)
(T, Lock_X. &)
(1T'1. Write_object, A\)
(11 Unlock. \)
(11 Lock_X. B)
(T1, Write_object. By

(T1. Unlock, B)

Figure 1.  Well-formed Transaction

A transaction is Two-Phase 1f 1t does not issue a lock action after i1t has issued an
unlock action. The first phase of the transaction, called the growing phase. begins with
the first action and continues up to the first unlock action. The sccond phase of the
transaction, called the shrinking phase, begins with the first unlock action and continues
through the last action. A transaction is strong two-phase if all unlock actions are issued
at the verv end of the transaction. Figure 2 illustrates a typical Two-Phase locking
action. The transaction T1 locks the data item A, and, after finishing all steps of the
update, it unlocks the item A. T1 does not need additional lock action for item A.

We apply the Two-Phase Locking Algorithm to the centralized strategy which is known

Centralized Locking Algorithm (CLA).




(T1, Lock_X, <A >)
(T1. Lock_X, <B=>)
{T1, Read_object, <A >)
(T1. Write_object, <A )
(T1. Read_object, <B>)
(T, Write_object, <B>)
(T, Unlock., < A>)

{11, Unlock, < B=»)

Figure 2.  Two-Phase Locking Action

B.

CENTRALIZED LOCKING ALGORITHM (CLA)

L'or the centralized locking algorithm, the lock manager is centralized at a single

node, i.e., the central or root node. It manages the locks of all data elements of the dis-

tributed database. We will explain the steps of CLA.

1.

9

An update transaction T arrives at node X.

Node X requests locks from the central node for all items referenced by transaction
T.

The central node checks all the request locks. If all can be grunted. then a granted
message 1s sent back to the node X. If some items are already locked. then the re-
quest 15 queued.

When node X gets a "Grant” message for transaction T, the items requested by
transaction T are read from the local database and updated values are computed.

A “Perform update T” message is sent to all other nodes, informing them of the
update. Node X updates the values and stored in its local database.

When another node receives its "Perform update T"message, it pertorms the up-
date.

When the central node receives its “Perform update T message, it releases the locks
of the involved items and then performs the update on the local database. Trans-
actions that were waiting on the released locks are notified, and can continue their
locking process at their central node.

(End of CLA algorithm)




C. CONCURRENCY CONTROL ALGORITHMS BASED ON TIME-STAMP
Time-stamp ordering (T O) is a technique whereby a serialization order is selected
a priort and transaction execution is forced to obev this order. Each transaction is as-
signed a unique time-stamp by the time-stamp manager (TM). There also is o time-
stamp assoclated with each database item indicating the time when this item was
updated. Time-stamp protocol is distributed in nature since all nodes which share the
data item must participate in the decision making. So here we see the distributed voting

algorithm using time-stamp which we simulated.

D. DISTRIBUTED VOTING ALGORITHM (DVA)

1. When transaction T arrives at a node X, it immediatelv reads the items and time-
stamp of desired from the local database. We use Ts(7,D1),..., to denote this.

ade 1

2. Transaction T visits the next node (i.€.. node Y) and compare the time-stamp for
the transaction base set items with the corresponding tume-stamps in the locul da-
tubase. 1f any base set item is obsolete (ie., Ts(T.Di)..,,, < TstDi)... ) then vote
"Reject” and send the “Reject” message to originating node. The transaction will
he restarted. If each base item is current (i.e., I's(7.Di) > TstDi)... ) then vote
“OK”.

After voting all the nodes which have the base item. if the transaction T got “Ok”
at all nodes, then the time-stamp 1s assigned to the transaction (i.e., Ts(7)) and the
“Accept” message with Ts(7) 1s sent to all nodes.

rode x e y

(8]

4. If a node receives an “Accept” message and if Ts(> Ts(T.Di),, then the new

rocr nage

values are stored in the local database and time-stamps of the base set items are
changed. Otherwise. no modification is pertormed, since the values are obsolete.
(End of DVA)




III. SIMULATION MODEL

We built a simulator using SIMSCRIPT [1.5 to examine the algonthms for our

studyv. Each simulator has an update transaction generator that produces transactions.

The items referenced by cach transaction are selected randomly.  The simulator then

mimics the operation of the hierarchical system as it produces the transactions. Of

course, the simulator does not read or write the data corresponding to a transacton: it

only mimics this by requesting the necessary [ O und CPU ume from the <ervers. How-

ever, the simulator keeps track of such activities as granting locks, time-stamping the

item values, and differed transactions. During the simulation, statistics such as average

response time of transactions and the number of messages are collected.

to

n

Several model paramieters are used:

Mean interarrival time of update at each node (It). We assume that interarrival
tme is Poisson distributed.

Mean base set size (Bs). We assume that the number of items referenced by an
update transaction has discrete exponentiul distribution.

Number of items (M), This parameter describes the total number of data items in
the svstem.

The number of nodes (N

The network transmussion time (1), In order to simplifv the simulation, we assume
that the time 1t take any message to go from any node to any other node is a con-
stant T.

CPU time slice (Cs). The CPU time slice is the time it takes any CPU scrver to do
a small computation; i.e., set lock.

CPLU update compute time (Cu). Cu is the compute time required for updating one
data item. In other words, the total time for one transaction is Cu multiplied by
Bs.

[ O time slice (1d). This 1s the time it takes to read or write a data item from the
database and locks or time-stamps.

The following parameter values are common to most of the previous performance

evaluation studies [Ref. 4] [Ref. 6]. It = | - 20 seconds, Bs = 2 - 10, N = 2- 15 nodes,




T = 0.1 ceconds M = 100 - 2000, Cs = 0.0000] seconds, Cu = 0.001 seconds, and [d

= (.025 <econds. .

A. THE PERFORMANCE MEASURE
There are many variables one can choose to evaluate the performance of

the svstem. In this studv we will consider two most important variables:

1. UPDATE RESPONSE TIME. The response time of update is defined as the dif-
ference between the finish time and the time when the update arrived at the origi-
nating node. The average rcsponse time of update transactions will be investigated.

NUMBER OF MESSAGES. Another important performance variable is the
number of messages that must be sent per update transaction. The local messages
are considered internal to a node and are not counted here.

(2]

B. PARTITIONED DATABASE MODEL

In this section we explain the partitioned database model in a general computer
network: modeling of the partitioned hierarchical database will be described in next sec-
tion. .

In a partitioned distributed database. which means a partiallv replicated Jdatabase,
items are not replicated at all nodes. As matter of fact, some items might not be dupli-
cated at all. There might exist only a single copy of some items. From the point of view
of a single node, it has a fraction or partition of the database. This partition can be
identical to, completely disjointed from, or can overlap the partitions at other nodes.

In order to model the partitioned database, we choose the simple model (a this time
it 1s not a hierarchical model) in which the data is replicated. As we mentioned before,
the database is the fixed set of M shared named resources called items. Each item has a
name and some value associated with it. For simplicity, we use the integer between | and
M (e, ]l <1< M)

1. DESCRIPTION PARAMETERS

Now we make some description parameters in order to describe the model. The

sct S(1) 1s the set of nodes which have a copyv of the value of item 1. The elements of S(1)

10




arc the node idenufication numbers which have a copy of value of item 1. We assume
all sets S(1) are not empty. Another parameter is a fragment, which is defined as the set
of 1tems that have a same set S(1). We use the notation S(I') lor the set of nodes where
the F is stored. That 1s S(I'} equals S(1) for all items 1 in I'. These parameters are used
for simulation. Figure 3 illustrates the very simple model and model description pa-
ramcters for current control.

[et Trl be the transaction which arrives at node B and has the base set

Bsl = { 1, 2.3 then

S(1y = [A.B. C. D]
$2) = | A B.C
S = [ A, B, C. D]

ForTrl F =L 3land S(F) =[ A, B.C,D].
Let Tr2 be the transacuon which arrive at node D, and has the base sct
Bs2 = [ 3,5 ], then
[, B.C.D|
3 3 [ A C, D, E

»ow

DA 4
4 (9¥]

— N
I It

FFor Tr2, FF is null and S(F) is not defined.

2. DIRECTORY MANAGEMENT

Now we discuss the directory management. Suppose that a transaction arrives
at a certain node with its base sct. How does the transaction know what nodes have a
copy of data item 17 In the case of Trl, which we used in the previous example. how does
Trl or node B generate the set S(i)?

There are basically two kinds of solutions. The first method is that a complete
directory of the whole database is replicated in each node. The other method is that the
transaction broadcasts the message “ Where is the item 1 located 7 ” to all nodes and
waits for the response from other nodes which have the data itemt {Ref. 1] A\ directory

15 a mapping that produces the set S(i) or S(F), given the iteni name 1 or fragment F.




Da={1, 2, 3, 4, 5}

Dp={1, 3, 5}
BS2={3, 5}

De={1, 2}
BS1={1, 2, 3}

D;: The data items
at node |

BS: Baseset

Figure 3.  Simple Partitioned Database Model.

By consulting the directory, a transaction T will be able to find out the set S(i) corre-

sponding to every item in Bs. In next chapter we take care of this problem in detail.

C. PARTITIONED HIERARCHICAL DATABASE MODEL

In the previous section we described the general model of a partitioned database.
Now we will make a hierarchical model of the partitioned database. When we describe
the hierarchical computer network, the level will be important factor. The level is the
depth of the network from the root node, which is the central node of the network to the
bottom nodes.

One of the characteristics of hierarchical distributed system is that each node has the

authority to control a subordinate node. We make one definition here. The logical




control channel 1s the chain of control which can give authoritv for updating. This defi-
niton 18 very important because although there may be a phyacal connection Henween
children nodes, 1t is not logical control channel.

Additional assumptions are adopted for the hicrarchical model. Let DI be the totul
sct of data items in the database at node "1 and suppose node 17 has two subordinate

nodes “"2” and "3, and their total set of data items in their database are D2 and D3 then

DI = DX + D3 + data items of node 1's own.

We can generalize this. If node | has n children nodes, then

D, = TD/- + 1's own dJdata items
P

=1

Where D; are children node of D,

So the root node which 1s the central node in hierarchical model has  ll the data
items in the network. Another important assumption we use 1s that the transaction Ir
can only request the update data items in its original node. If items which are referenced
bv a certain transaction are not located at that node, then the transaction 1s a wrony
transuction. This 1s quite reasonable in a hierarchical distributed database model.

The Jirectory of our model is somewhat like cur databasc, so cach node has its own
directory and the root node has a whole directory of the svstem. Figure 4 illustrates the
veryv simple model of a partitioned hierarchical database model. Let Trl arrive at node

C with baseset Bsl={(1,2]. then
S{1] ={A,B,C|
S[2) = [A. B, C]
and F = [1,2],soS[F] = [A,B, C]

Let Tr2 arrive at node B with baseset Bs2 = [ 1, §, 8 |, then
e S[1]=[A,B C)
e SI§=[A.B, D]

il




o S8} =[AB]
e and F is empty, therefore S[F] is not defined.

De={1, 2, ..., 8}

BS2={1, 5, 8}
Oc={1, 2, 3}
BS1={1, 2} N,: The data items
at node i
BS: Baseset
Figure 4.  Partitioned Hierarchical Database Model

14




IV. ANALYSIS OF SIMULATION RESULTS
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Figure 5.  Effect of Interarrival Time on Response Time

We have tried numerous system settings and studied the sensitivity of cach param-
eter separately. Important system parameters are the response time, the number of nodes
in the network, the number of levels in the network, the interarrival rate of transactions,
and the average system-wide traffic. All curves in this chapter are plotted by connecting
discrete data points from simulation results.

Figure 5 shows the effect of the mean interarrival time on the mean response time.
We notice that, the longer the interarrival time (low arrival rate), the shorter response

time in both algorithms, but CLA outperforms the DVA.
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Figure 8.  Effect of Level of Network on Response Time

This is because in CLA only the root node perform decision making. However depend-
ing on the level of the network, the results varv.(See Figure 7, Figure 9, Figure 10, and
Figure 11).

The effect of transmission time on the response time of transaction is shown in
Figure 6. Both algorithms exhibit the same behavior. The CLA appears more sensitive
to the transmission time than the DVA. This is because the number of traffic in CLA is
much higher than that of DVA (See Figures 12, and 13). Also the CLA begins to suffer
a transmission delay when T reachs 0.16 sec. When transmission time is low, DVA is
penalized by the coordination time among participants, while CLA is penalized for the
time required to send the grant signal to the requesting node when the transmission time

is above a certain threshold (0.16 in Figure 6).
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Figure 7 shows the cffect of the number of r “des on response time. For both al-
gorithms, increasing the number of nodes in the network increases the response time in
an O(n*) manner, which means the performance of system is degrading. The increase in
response time is due to the fact that, as the number of sites increases, the overall rate
of arrival of trunsactions into the system also increases, causing additional delays on the
processing of transactions. The DVA is less sensitive to the number of nodes in the
network than the CLA. Because in the CLA, when number of nodes gets larger a heavier
I O loau 1> present- at the central node, but in the DVA the 1 O load is distributed

among the sites.
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The cffect of the level of the network on the response time is depicted in Figure S.
This result shows that the level of hierarchical network, given the same number of nodes,
has a direct impact on the response time. The impact 1s not entirely hnear. [t indicates
a tendency that the performance will be degraded exponentially. This graph is somewhat
complicated, so we consider 3 cases depending on the level of network. and investigate
the response time versus interarrival time for each case. The results of these are shown
Figure 9. Figure 10, and Figure 1. Figure 9 shows the cflect of interarrival time on re-
sponse time when L ois small (1.e., L < 3). The CLA performs better than the DVA in
this case. This is quite reasonable because, when L is «mall, the tratlic of the svstem iy
not as important a factor from a performance point of view. Thus, the CLA takes less
time to perform the transiaction than the DVA. DVA needs extra [ O time for time-
stamp for S{F]. Figure 10 shows case II (i.e.,, 3 < L < I3) In this case, the DVA per-
forms better than the CLA, because if L gets larger, the tratlic for system becomes more
important and, for conflict transaction, the transaction has to get to the central node in
order to have locks in CLA. However, for DVA the transaction will be rejected before
getting to the central node. This behavior saves much of the DV.A's response time.
Figure 11 shows an extreme case (i.e., L > 135). In this case the two algorithms ure al-
most identical in performance.

Figure 12 shows the average traffic versus the number of nodes in the network. [or
a given level of the network, the average traffic of the system is increased sharply when
number of nodes get to 10, and it will be saturated after the number of nodes exceeds
10.

Figure 13 shows the average traflic of the network versus the level of the network.

Here we observe that the increasing traflic is somewhat lincar, but, when L ogets larger,




the rate of increase is decreased. Even though Figure 12 and Figure 13 are simular, we

can sav that the more critical factor for traffic of network is the level ol the network.




V. CONCLUSION

We have presented a performance comparison of concurrency control algorithms.
Based on the results obtained, we reached the following major coclusions:

The network structure is the most important factor for the performance of concur-
rency control algorithms.  Especially, in a hierarchical computer network the level of
network is the most critical factor to determune the performance of concurrency control
algorithms.

Although we discuss cach parameter individually, @ network designer <hould note
that all of them are related and should consider their combined eflects on the network
performance. The tradeotls among different parameters mav be atlected by other oper-
ational policy that exists in the system. To have each node exhibiting various transaction
rates and interarrival rates is one of the areas that needs future investigation when a
network designer wants to customize or condition the network to his need.

This study was the first trial considering the hierarchical structure of a network in
performance analysis of the concurrency control arca. During simulation of various hi-
crarchical computer networks we find that 1t 1s hard to describe the network structure
precisely. TFor example, even though a network has the same number of levels and same
number of nodes, there are still many possible svstem configurations. There is a need
for a better network representation in terms of data structure and computation algo-
rithms.

In order to maximize the performance of the network the choice of concurrency
control algorithms is verv important. Since the network structure mayv be changed dv-
namically so we may need to develop dvnamic concurrency algorithms which can per-

form best under various svstem structures.




APPENDINX A, SIMULATION PROGRAM LIST FOR CLA

P ek dedeiostde et e st Tk v T o v sl s T ek e st e de e e s e e e e e e de e e e e

"' This program is written for simulation of CLA

P e ve e e T e de Ye T e ST AT T A Y T e S ob T AT S sk ek e e aeab e des s At ot

U Sedeseaked st v sk v e deve s ot ot s e e e e s de v de dese e s e e e de e e de o ek sk o
PREAMBLE
[N

SerTrreve e Yerkat Y Yookt Yok Yo b s e se st sk s Ak st ot ve bk ab e abe s ol s de s s e e o
NORMALLY, MODE IS INTEGER
s

DEFINE RESPCNSE. TIME TO MEAN ATRB1
DEFINE AVERAGE. BASESET TO MEAN ATRB2
DEFINE COMM. TRAFFIC TO MEAN ATRB3

EVENT NOTICES INCLUDE TRANSACTION.GEN, ARRIVAL. AT. CENTRAL,
RELEASE. LOCK, UPDATE

EVERY ARRIVAL. AT. CENTRAL HAS A RECEIVE. TRANSACTION

EVERY RELEASE. LOCK HAS A DONE. TRANSACTION

EVERY UPDATE HAS A UPDATE. TRANSACTION

TEMPORARY ENTITIES
EVERY TRANSACTION HAS A GEN.TIME, A TRANSACTION.SEQ, A MESSAGE. TYPE,
A NODE.NUM, A NODE.LEVEL, A NUM.OF.BASESET, A BASE. ITEM
EVERY TRANSACTION MAY BELONG TO THE QUEUEL,
AND MAY BELONG TO THE WAIT. QUECE

THE SYSTEM OWNS THE QUEUE1l, THE WAIT. QUEUE

DEFINE QUEUE1l AS A FIFO SET

DEFINE WAIT.QUEUE AS A FIFO SET

DEFINE INITIATE AS A ROUTINE

DEFINE CHECK. LOCK AS A ROUTINE

DEFINE REPORT.GENERATOR AS A ROUTINE

DEFINE TEST AS A ROUTINE

DEFINE LOCK.LIST AS AN INTEGER, 1-DIMENSIONAL ARRAY
DEFINE BASE.TABLE AS AN INTEGER, 2-DIMENSIONAL ARRAY

DEFINE GEN.TIME, RESPONSE.TIME, AVERAGE.BASESET, T, Cu, Id, Cs,
COMM. TRAFFIC, RATE AS A REAL VARIABLES

DEFINE TRANSACTION.NUM, TRANSACTION.SEQ, MESSAGE. TYPE, NODE.NUM,
NODE. LEVEL, NUM.OF.BASESET, QUE. INDEX, LASTNODE,
MINBASE, MAXBASE, LOCK.STATUS, Dn, LIMITofTRANS, MAXLEVEL,
BASE. ITEM, COUNT, SYSTEM.STATUS AS A INTEGER VARIABLES

TALLY AVE.RESPONSE AS THE AVERAGE COF RESPONSE. TIME
TALLY AVE. TRAFFIC AS THE AVERAGE OF COMM. TRAFFIC

END




Slestesloate st

YereTede vl v e see
RESERVE BASE. TABLE(**,”) AS 2000 BY 5

RESERVE LOCK. LIST AS 2000

READ S5YS_RATE

RATE = SYS_RATE/20

SCHEDULE A TRANSACTION. GEN NOW

LET T = 0.08 "' MESSAGE TRANSMISSION TIME

LET Cu = 0.001 '" CPU TIME SLICE TO CnMPUTE ACTUAL VALUE OF TRANS
LET Cs = 0.00001 "' CPU TIMESLICE FOR SMALL COMPUTATION

LET 1Id = 0.025 "' 1,0 TIME SLICE TO READ OR WRITE FROM DATABASE
LET LASTNODE = 20 "' 1AST NODE NUMBER

LET MINBASE = 1 "'OMINIMUM NUMBER OF BASESET

LET MANBASE = 5 "TOMANIMUM NUMBEROF BASESET

LET CUE. INDEX = 0 "' QUEINDEX

LET LCUX.STATUS = 0 '' IF LOCKED ALREADY THEN 1 ELSE O

TET Do = 1000 * LASTNODE "' TOTAL DATA ITEM IN THE DATARASE

LET LIMITofTRANS =1000 "' THE NUMBER OF TRANSACTICN SIMMULATED

LET ANLEVEL = 3 "' LEVEL OF NETWORK

LET CCUNT = 0 "' NUMBER OF TRANSACTION
LET TXANSACTION.NCM =0

LET SYSTEM. STATUS = 0

START SIMULATION

END
P eyt Sede s se e Tl Yo st Yedrdk et de sk s de sk sle e de e vtk e e e ve Yok
?VENT TRANSACTION. GEN

R LR TR S TR TR R R LR Y DL FLVRCL LY

T Teded v Yevedede et Ye st Yoo s db e ek ve e ety

i et i aiey

CREATE A TRANSACTION
ACD 1 TO TRANSACTION. NUM
IF TRANSACTION.NUM IS GE LIMITofTRANS
CALL REPORT. GENERATOR
ALWAYS
LET GEN.TIME = TIME. V
LET MESSAGE.TYPE = 1
CALL INITIATE
IF NODE.NUM =1
IF SYSTEM. STATUS = 0
CALL CHECK. LOCK
ELSE
FILE TRANSACTION IN THE WAIT. QUEUE
REGARDLESS
ELSE
SCHEDULE AN ARRIVAL. AT. CENTRAL GIVEN TRANSACTION
IN (T * (NODE.LEVEL - 1 )) MINUTES
REGARDLESS
SCHEDULE A TRANSACTION.GEN IN (EXPONENTIAL. F(RATE, 1)) MINUTES
KETURN
END

to
(4




P ey T Yot v T e Teal st ek aat ve vt e e v e Yo v e s e e Y Yo e ve s e et s Yo e e s e e

gQUTINE INITIATE

JeveTeveve Yoo ve v Yo v e Y e s Yoot e ve s e e db e se vl v e e Al e e o de st e

ADD 1 TO TRANSACTION. SEQ
NODE. NUM = TRUNC. F(UNIFORM. F(1,LASTNODE, 1))
IF NODE.NUM = 1 NODE. LEVEL = 1

ELSE
IF NODE.NUM = 2 OR NODE.NUM = 3 NODE. LEVEL = 2
ELSE
NODE. LEVEL = 3
REGARDLESS
REGARDLESS

NUM. OF. BASESET = TRUNC. F(UNIFORM. F(MINBASE ,MAXBASE, 1))
LET J = TRANSACTION. SEQ
FOR I = 1 TO NUM. OF. BASESET
DO
IF NODE.NUM = 1 BASE.TABLE(J,I) = TRUNC.F(UNIFORM.F(1,2000,1))
ALWAYS
IF NODE.NUM =

ro

BASE. TABLE(J,I) = TRUNC. F(UNIFORM.F(1,900,1))

ALWAYS
IF NODE.NUM = 3 BASE.TABLE(J,I) = TRUNC.F(UNIFORM.F(901,1900,1))
ALWAYS
IF NODE.NUM > 3 AND  NNDE.NUYM < 12
BASE. TABLE(J,I) = TRUNC.F(UNIFORM.F(1,800,1))

ALWAYS

IF NODE.NUM > 11 PASE.TABLE(J,I) = TRUNC. F(UNIFORM.F(901,1800,1))
ALWAYS
LOOP

END

P edeasa s e e ve ve e et e e sk v v ve e vk v Y e e Yo vt Yo Tt e e e e v v ve e vk v Yol sk sk e

EVENT ARRIVAL. AT. CENTRAL GIVEN RECEIVE. TRANSACTION

P Sevryrdeslevt v v e T Yo vt e deat T e e deak Y sk Yo dle e e vt Yo v v T deale vk se ve s v v ve ve st o

IF MESSAGE. TYPE(RECEIVE. TRANSACTION) = 1
IF SYSTEM. STATUS = 0
SYSTEM. STATUS = 1
CALL CHECK. LOCK
ELSE
FILE RECEIVE.TRANSACTION IN THE WAIT. QUEUE
REGARDLESS
ELSE SCHEDULE A RELEASE. LOCK GIVEN RECEIVE. TRANSACTION
IN (T * (NODE. LEVEL(RECEIVE. TRANSACTION)-1)) MINUTES
REGARDLESS
RETURN
END




LET LOCK. STATUS = 0
FOR I = 1 TO NUM. OF. BASESET
DO
IF LOCK. LIST(BASE. TABLE(TRANSACTION. S2Q,1)) =
LZCK. STATLUS = 1
ALWAYS
LOCP
IF LOCK. STATLS =1 FILE TRANSACTION IN THE QUECUE1L
QUE. INDEX = QUE. INDEX + 1
ELSE
FOR I = 1 TO NUM. OF. BASESET
DO
LOCK. LIST (BASE. TABLE(TRANSACTION.SEQ,I)) =

SCHEDULE AN UPDATE GIVEN TRANSACTION
IN (T »» (NGDE.LEVEL -1)) MINUTES

REGARDLESS
END

Y e e T e e Y e e e ey Ve Yo e e e Y Y e Y Yo e e e Ve Ve Y Vet S Yo e Yo e Fe e v v e e e
?1 NT LDD%TE I\E\ UPDATE. TR%\S‘LTIOV

",’:-,'--,'::.-’ Yevevedevevedese oo vevese ey eYeleYeveveTe devededede e e e e

HESSAGE. TYPE(UPDATE. TRANSACTION) = 2
SCHEDULE AN ARRIVAL. AT. CENTRAL GIVEN UPDATE. TRANSACTION IN
(NUM. CF. BASESET(UPDATE. TRANSACTION)
* (Cu + 2%Id) +((NODE.LEVEL(UPDATE. TRANSACTION)-1) * T)) MINUTES

RETURN
ND

LR}

Sene e e T e e e Y e e e e e S r e e e e Y e e ey S e e e e e e Ve e s S Y e s e Yo s

E»E\T RVLEASE LO( GI\EV DONE. rRX\SACTIO\

Yevedeveveds Yoo Jevevededededeli e de eV Yoo e Yo de e de e e ke s e

FOR I = 1 TO NUM.OF. BASESET(DONE. TRANSACTION)
DO
LOCK. LIST (BASE. TABLE(TRANSACTION. SEQ(DONE. TRANSACTION),I)) =
LOOP
LOCK. STATUS = 0
LET RESPONSE.TIME = TIME.V - GEN.TIME(DONE. TRANSACTION)
LET COMM. TRAFFIC = NODE.LEVEL(DONE. TRANSACTION) * 3
LET AVERAGE. BASESET = NUM. OF. BASESET
SYSTEM. STATUS = 0

IF QUEUE1 IS NOT EMPTY
REMOVE THE FIRST TRANSACTION FROM THE QUEUEL
QUE. INDEX = QUE. INDEX - 1
SYSTEM. STATUS = 1
CALL CHECK. LOCK
ELSE




IF WAIT.QUEUE IS NOT EMPTY
REMOVE THE FIRST TRANSACTION FROM THE WAIT. QUEUE
SYSTEM. STATUS =1
CALL CHECK. LOCK
ALWAYS
REGARDLESS
RETURN
END

Tt ereaevete e s Teve vt veve s dede e e d s st ve dea s e e date de e v e e e e de de de st e S v de e e ok

SKIP 2 OUTPUT LINES
PRINT 1 LINE THUS
STMMULATION RESULT OF TWO PHASE LOCKING ALGORITHM
SKIP 1 LINE
PRINT 2 LINE THUS
I[. MODEL INPUT PARAMETER

a. MODEL DESCRIPTION
FRINT 3 LINE WITH UAXLEVEL, LASTNODE, AND Dn THUS
LEVEL OF THE NETWORK: o
NUMBER OF NCDE IN NETWORK: e
DATA ITEMS IN NeTWORK: e
LINE THUS
IMHULATION PARAMETERS
LINE WITH LIMITofTRANS, RATE, AND MAXBASE THUS
NUMBER OF TRANSACTION SIMMULATED oA
MEAN INTERARRIVAL TIME : ¥,
MAXIMUM BASESET : &
PRINT 1 LINE THUS
IT. RESULTS OF SIMMULATION

PRINT
b.
PRINT

QP = WU LD

PRINT 2 LINE WITH AVE. RESPONSE*HOURS. V*MINUTES. V,
AVE. TRAFFIC THUS

a. THE AVERAGE RESPONSE TIME OF UPDATE TRANSACTION : e,

b. THE AVERAGE NUMBER OF TRAFFIC :
STOP
END

e




APPENDINX B.  SIMULATION PROGRAM LIST FOR DVA

1l et ot oo a e sl st o e el o ol e e o Tl o
erskveseataky b v s

?$EAMBLE

e YT Y e e e Y e e e e v Y e e e e e e e Ve e e e e
NORMALLY, MODE IS INTEGER

PEFINE RESPCNSE. TIME TO MEAN ATRB1
CEFINE AVERAGE. BASESET TO MEAN ATRB2
CEFINE COMM.TRAFFIC TO MEAN ATRB3

EVENT NOTICES INCLUDE TRANSACTION. GEN, VOTING,
CHZCK_CK

EVERY VOTING HAS A VOTING. TRANSACTION

EVERY CHECK_OK HAS A CHECKING. TRANSACTION

TEMECRARY ENTITIES
EVERY TRANSACTION HAS / GEN.TIME, A TRANSACTION.SEQ, A MESSAGE.TYPE,
A NODE.%w ' A NODE.LEVEL, A NUM.OF.BASESET, A BASE. ITEM,
A TIMT_ ° .MP, A CURRENT_NODE
EVERY TRANSACTIv: sAY BELONG TO THE QUEUEL,
AND MAY BELONG TO THE WAIT. QUEUE

THE SYSTEM OWNS THE QUEUE1l, THE WAIT.QUEUE
DEFINE NUEUE1 AS A FIFO SET

DEFINE wAIT.QUEUE AS A FIFO SET
DEFINE INITIATE AS A ROUTINE

DEFI{NE INPUTRTN AS A ROUTINE

DEFINE FINDSET AS 4 ROUTINE

DEFINE INITIAL_TAB AS A ROUTINE
DEFINE SEND_ACCEPT AS A ROUTINE
DEFINE SEND_REJECT AS A ROUTINE
DEFINE SYSTEM_CONTROL AS A ROUTINE
DEFINE EN_QUEUE AS A ROUTINE

DEFINE REPORT.GENERATOR AS A ROUTINE

DEFINE CHILDREN_TAB AS AN INTEGER, 2-DIMENSIONAL ARRAY
DEFINE PARENT_TAB AS AN INTEGER, 1-DIMENSIONAL ARRAY
DEFINE DATA_DIR AS AN INTEGER, 2-DIMENSIONAL ARRAY
DEFINE LEVEL_TAB AS AN INTEGER, 1-DIMENSIONAL ARRAY
DEFINE BASE.TABLE AS AN INTEGER, 2-DIMENSIONAL ARRAY
DEFINE SET_TAB AS AN INTEGER, 2-DIMENSIONAL ARRAY
DEFINE TSofDB AS A REAL, 2-DIMENSIONAL ARRAY

DEFINE STATUS_TAB AS AN INTEGER, 1-DIMENSIONAL ARRAY

DEFINE GEN.TIME, RESPONSE.TIME, AVERAGE.BASESET, T, Cu, Id, Cs,
. COMM. TRAFFIC, TIME_STAMP,RATE AS A REAL VARIABLES
DEFINE TRANSACTION. NUM, TRANSACTION. SEQ, MESSAGE.TYPE, NODE.NUY,




NODE. LEVEL, NUM. OF. BASESET, QUE. INDEX, LASTNODE,CURRENT_NODE,

MINBASE, MAXBASE,
BASE. ITEM, COUNT,

LOCK. STATUS, Dn, LIMITofTRANS, MAXLEVEL,
SYSTEM. STATUS, YESNO AS A INTEGER VARIABLES

DEFINE MAX_PATH AS AN INTEGER VARIABLE

TALLY AVE.RESPONSE AS THE AVERAGE OF RESPONSE. TIME

TALLY

AVE. BASESET AS THE AVERAGE OF AVERAGE. BASESET

TALLY AVE. TRAFFIC AS THE AVERAGE OF COMM. TRAFFIC

END

"1 evededede et oo e desle s e et seab sl de s e e e e Feata e de e deve e de vt Fe e s e oo o

MAIN

Tt

CALL

INITIAL_TAB

FRINT 1 LINE THUS
0 YOU WANT DEFAULT MODEL ? IF YES TYPE 1

READ

YESNO

IF YESNO <> 1

CALL

INPUT_RTN

ALWAYS

Ferr At Ye v ok ok v vt Yo ve st v s de Y de e S s v e a e sk e sl abe e s de v e sl de s e dle e e de e sk o

SCHEDULE A TRANSACTION. GEN NCW

LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET

1

T=0.2

Cu = 0.001

Cs = 0.00001
1d = 0.025
LASTNODE = 10
MINBASE = 1
MAXBASE = 5
QUE. INDEX =
LOCK. STATCUS
Dn = 1000
LIMITofTRANS =1000
MAXLEVEL = 3 v
COUNT = 0 v
TRANSACTION.NUM = 0

SYSTEM. STATUS = 0

RATE = 3

0
=0

1)
te
11
1
Tt
tt
1t
tt
T
Tt

START SIMULATION

END

MESSAGE TRANSMISSION TIME

CPU TIME SLICE TO COMPUTE ACTUAL VALUE OF TRANS
CPU TIMESLICE FOR SMALL COMPUTATION

I/0 TIME SLICE TO READ OR WRITE FROM DATABASE
LAST NODE NUMBER

MINIMUM NUMBER OF BASESE

MAXIMUM NUMBEROF BASESET

QUEINDEX

IF LOCKED ALREADY THEN 1 ELSE 0

TOTAL DATA ITEM IN THE DATABASE

"' THE NUMBER OF TRANSACTION SIMMULATED

LEVEL OF NETWORK

NUMBER OF TRANSACTION

T Jedtedede e dededededede e dedede e e dededoFe e dedededede e e dodedededede de dedededede e Yo e dede e e

EVENT TRANSACTION. GEN
! 1 Jededededededededededededededededekodotededededetededededeion dededofodedeodeodedededededede e dode

CREATE A TRANSACTION

ADD 1 TO TRANSACTION. NUM
LET TRANSACTION. SEQ = TRANSACTION. NUM
IF TRANSACTION.NUM IS GE LIMITofTRANS

30




CALL REPORT.GENERATOR
ALWAYS
LET GEN.TIME = TIME.V
LET TIME_STAMP = TIME.V
CALL INITIATE
CALL FIND_SET

SCHEDULE A TRANSACTION.GEN IN (EXPONENTIAL. F(RATE,1)) MINUTES
RETURN

END

1t

e e e e Y e e e e e T e e e e e s e e e ve Y st S e s e e Yt e e Yo v sese ok

INITIAL_TAB

B T e R T s, Py Py ST T s s DL L S, B o A P
LE R O O b A i S A D A i i et e A R T i P T ity

RESERVE CHILDREN_TAB(®*,*) AS 30 BY 30

RESERVE PARENT_TAB, LEVEL_TAB, STATUS_TAB AS 30
KESERVE DATA_DIR(*,*) AS 30 BY 2

RESERVE BASE. TABLE(*,*; AS 1000 BY 5

RESERVE SET_TAB(+,*) A% 5 BY 30

RESERVE TSofDB(*,*) AS 30 BY 1000

FCR I =1 TO 1000
DO
FOR J =1 TO 5
DO
BASE. TABLE(I,J) = 0
LOOP
LOOP
FOR I =1 TO 30
DO
PARENT_TAB(I) = 0
LEVEL_TAB(I) = O
STATUS_TAB(I) = 1
FOR J =1 TO 30
DY
CHILDREN_TAB(I,J) =0
LOOP
FOR J =1 T0 2
DO

|
(@]

DATA_DIR(I,J) =
LOOP
FOR J = 1 TO 1000
DO
TSofDB(I,J) = 0.0
LOOP
LOcP
FORI =1TO0 5
DO
FOR J =1 TO 30
DO
SET_TAB(I,J)

1}
o

3t




LOOP
LOOP
RELEASE CHILDREN_TAB, PARENT_TAB, DATA_DIR, LEVEL_TAB, BASE.TABLE,
SET_TAB, TSoFDB, STATUS_TAB

END

U e T Y Y Y e e e Ty e T Y Yo e T Y YT e e e S S Y v YTk Y e se v Yo s e v ey e e ok

ROLTT\V I\ITIATV

SEYeTe s eI e e e e e dt Yo de e e e v s e s sk Ye s Sl v ve e dle v s e s e e e e e

RESERVE LEVEL_TAB AS 30

RESERVE DATA_DIR(*,*) AS 30 BY 2

RESERVE BASE. TABLE(‘ *) AS 1000 BY 5

ADD 1 TO TRANSACTION. SEQ

NODE. NUM = TRUNC. FCUNIFORM. F(1,LASTNODE, 1))
LET CURRENT_NCDE = NODE. NUM

IF YESNO =1 "1 oseeeierior TP DEFAULT NETWORK  weseestior
I NODE.NUM =1 NODE. LEVEL = 1
ELSE
[F NODE.NUM = 2 OR NODE.NUM = 3 OR NODE.NUM = 4 NODE. LEVEL = 2
ELSE
NUDE. LEVEL = 3

REGARDLESS
REGAKRDLESS

NUM. OF. BASESET = TRUNC. F(UNIFORM. F(MINBASE,MAXBASE, 1))
LET J = TRANSACTION. SEQ
FOR I = 1 TO NUM. OF. BASESET
DO
I[F NODE. NUM

1 BASE.TABLE(J,I) = TRUNC. FCUNIFCRM. F(001,1000,1))
DATA_DIR(1, 1) 001
DATA_DIR(1,2) 1000

non

ALWAYS
IF NODE.NUM = 2 BASE.TABLE(J,I) = TRUNC.F(UNIFORM. F(001,400,1))
DATA_DIR(2,1) = 001
DATA_DIR(2,2) = 400

ALWAYS
IF NODE.NUM = 3 BASE.TABLE(J,I) = TRUNC. F(UNIFORM. F(401,700,1))
DATA_DIR(3,1) = 401
DATA_DIR(3,1) = 700

ALWAYS

IF NODE.NUM = 4 BASE.TABLE(J,I) = TRUNC. F(UNIFORM.F(701,900,1))
DATA_DIR(4,1) = 701
DATA_DIR(4,2) = 900

ALWAYS

IF NODE.NUM = 5 BASE.TABLE(J,I) = TRUNC. F(UNIFORM.F(1,100,1))
DATA_DIR(5,1) = 001
DATA_DIR(5,2) = 100

ALWAYS
IF NODE. NUM

I
)}

BASE. TABLE(J,I) = TRUNC. F(UNIFCRM.F(101,200,1))
DATA_DIR(6,1) = 101
DATA_DIR(6,2) = 200




ALWAYS
IF NODE. NUM

~J

BASE. TABLE(J,I) = TRUNC. F(UNIFORM. F(201,300,1))
DATA_DIR(7,1) = 201
DATA_DIR(7,2) = 300

ALWAYS

IF NODE.NUM = 8 PBASE.TABLE(J,I) = TRUNC.F(UNIFORM. F(401,500,1))
DATA_DIR(8,1) = 401
DATA_DIR(8,2) = 500

ALWAYS

IF NODE.NUM = 9 BASE.TABLE(J,I) = TRUNC. F(UNIFCRM.F(501,600,1))
DATA_DIR(9,1) = 501
DATA_DIR(9,2) = 600

LWAYS
IF NODE. NUM

10 BASE.TABLE(J,1) = TRUNC.F(UNIFORM.F(701,800,1))
DATA_DIR(10,1) 701
UaATA_DIR(C10,2 800

ALWAYS

Loop
LET LEVEL_TAL 1)
FCR I =2 7T0 4
D)
LET LEVEL_TAB(I®
LoiPp
FOR I =5 TO 10
o0
LaT LEVEL_TAB(I)
LOOP
ELSE P e IF NOT DEFAULT NETWCREK srvevesesederoderodededrseseveeded
NGDE. LEVEL = LEVEL_TAB(NODE. NUM)
NUMLOF. BASESET = TRUNC. F(UNIFORM. F(MINBASE ,MAXBASE, 1))
LET J TRANSACTION. NUM
FOR I 1 TO NUM. OF. BASESET
DO

BASE. TABLE(J,I) = TRUNC. F(UNIFORM. F(DATA_DIR(NODE. NUM, 1),

DATA_DIR(NUODE. NUM,2),1))

1
—

i
o

3

LCOP
REGARDLESS

END

PV Sevededr Yo e Yo v ve e e Yo oo Yook e v Yo v v e ve S e ek Yot dede dode e Fede e deve e o ve e

ROUTINE INPUT_RTN
T seveataesedevestseseve e ve S ve st e vest ok ol ve ol ve ok s et ot e ok e ak s s Yo sk s e de stk o

RESERVL CHILCREN_TAB(*,*) AS 30 BY 30
RESERVE LEVEL_TAB AS 30

RESERVE DATA_DIR(v,”) AS 30 BY 2
RESERVE PARENT_TAB AS 30

LET INDX = 2

PRINT 2 LINE THUS

INPUT PARAMETERS CAREFULLY !!

HOW MANY NODES THE NETWORK HAVE 7
READ T.ASTNODE

PRINT 1 LINE THUS
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WHAT IS THE LEVEL OF THE NETWORK ?
READ MAXLEVEL
FOR I = 1 TO LASTNODE
3]0
PRINT 1 LINE WITH I THUS
HCW MANY CHILDREN DODES NODE #¥* HAVE ?
READ J
IF J <> 0
FOGRK=17T0J
DO
IF INDX <= LASTNODE
CHILDREN_TAB(I,K) = INDX
PARENT _TAB(INDX) =1
INDX = INDX + 1
ALWAYS
LOOP
ALWAYS
LOOP

FOR J = 1 TC LASTNODE

DO

PRINT 1 LINE WITH J THUS

WHAT IS THE LEVEL OF NODE #** AND RANGE COF DATA ITEM 7
READ LEVEL_TAB(J), DATA_DIR(J,1), AND DATA_DIR(J,2
LOOP

PRINT 1 LINE THUS
THANK YOUR INPUT IS DONE !!!

"' THIS ROUTINE GENERATE SETS WHICH S°i AND S°F
RESERVE LEVEL_TAB AS 30
RESERVE SET_TAB(*,¥*) AS 5 BY 30
LET MAX_PATH = 0
FOR I =1 TO NUM.OF.BASESET
DO
FOR J = 1 TO LASTNODE
Do
IF BASE. TABLE(TRANSACTION. SEQ,I) >= DATA_DIR(J,1)
BASE. TABLE( TRANSACTION. SEQ,I) <= DATA_DIR(J,2)
SET_TAB(I,J) =1
ALWAYS
LOOP
LOQP

FOR I = 1 TO LASTNODE
DO

LET BASE_COUNT = 0
LET NODE_STATUS = 0

KB

AND




FOR J = 1 TO NUM.QF. BASESET
DO
IF SET_TAB(J,I) <> O
BASE_COUNT = BASE_COUNT + 1
NODE_STATUS = 1
ALWAYS
LOQP
IF NODE_STATUS = 1
LET CURRENT_NODE = I
IF MAX_PATH <= ABS.F(LEVEL_TAB(NODE.NUM) - LEVEL_TAB(CURRENT_NODE})
MAX_PATH = ABS.F(LEVEL_TAB(NODE.NUM) - LEVEL_TAB(CURRENT_NODE)})
ALWAYS
PRINT 5 LINE WITH NODE.NUM, CURRENT_NODE, LEVEL_TAB(NODE.NUM),
LEVEL_TAB(CURRENT_NODE), BASE_CCUNT THUS
NODE.NUM = ¥
CURRENT_NODE = +*
LEVEL QOF NODE.NUM = %
LEVEL OF CURRENT NODE = #*
BASE CCUNT = o
SCHEDULE A VOTING GIVEN TRANSACTION IN
( (ABS.F(LEVEL_TAB(NODE.NUM) - LEVEL_TAB(CURRENT_NODE)) * T) +
(BASE_COUNT * Id )) MINUTES

ALWAYS

LJOP

SCHEDULE A CHECK_CK GIVEN TRANSACTION IN ((MAX_PATH * T) + NUM.OF. BASESET)
MINUTES

END

P T ey dr s Yo Yesk sl vt e s ade S e v ol ve sk Yo e s e v At S e e v e e dt e Yo T v e e o e sle ok

EVENT VOTING GIVEN VOTING. TRANSACTION

tr ettt ato ool atecto e e oato ol e o

RESERVE TSofDB(*,*) AS 20 BY 1000
RESERVE STATUS_TAB AS 30
LET OK_STATUS = 0
FOR K = 1 TO NUM. OF. BASESET(VOTING. TRANSACTION)
DO
IF SET_TAB(K,CURRENT_NODE(VOTING. TRANSACTION)) <> 0
IF TIME_STAMP(VOTING. TRANSACTION) >= TSofDB(CURRENT_NODE(VOTING. TRANSACTION),
BASE. TABLE( TRANSACTION. SEQ(VOTING. TRANSACTION),K)
OK_STATUS = 1
ALWAYS
ALWAYS
LOOP
IF OK_STATUS = 1
TIME_STAMP(VOTING. TRANSACTION) = TIME.V
STATUS_TAB(CURRENT_NODE(VOTING. TRANSACTION)) = 1
ELSE
STATUS_TAB(CURRENT_NODE( VOTING. TRANSACTION)) =0
REGARDLESS
RETURN

END




PY Severr ey ek Yedlr Yoot v ves- e s ve sl v v s dk e v v Yo e sl e v el et vl veste e

ROLTI\E bE\D ACCEPT

e et s T P S RS Al Yeeert ey e b v b e e e e b e el e ey e et oe o

FOR I 1 TO LAST\ODE
Do
FOR J = 1 TO NUM. OF. BASESET(TRANSACTION)
DO
IF SET_TAB(J,I) =
IF TSofDB(I,J) <= TIME_STAMP(TRANSACTION)
TSofDB(I,J) = TIME_STAMP{ TRANSACTION)
ALWAYS
ALWAYS
LOOP
LooP
LET RESPONSE.TIME = TIME.V - GEN.TIME(TRANSACTION)
FOR I = 1 TO LASTNODE
Lo
FOR J = 1 TO NUH. OF. BASESET(TRANSACTION)
DO

SET_TAB(J,I) =0

LOOP
STATUS_TAB(I) =
LOOP
CALL SYSTEM_CONTROL
END
Tl idedten. enfestestete oot 4" J..'.J-J J J-J Jf" J.J.JrJ 7 ’I-JqJ‘deaJ‘.L*".J .LJ-J *J J J J..' J-J

RObTI\E SE\D REJECT

[ e taatataata e sleade adeote uloade aloate ale deatalealanle alas’ ol ate ata e afa ala ot 't nta aloata o
rariariy f ‘l\ Rkt ety Ot Attt Car i e i i el i b 2 D A i T Al S S e A R )

CALL EN_QUEUE
CALL SYSTEM_CONTROL
END

"“""‘7’:7’?7" , ’ o's ’ ’-~'¢~'- S, e 7 ool "~ "‘ .“ Jeslevs 7’--’..! " J‘J-+J e ‘.J-J =tes's J.J"LJ‘ 'ty

ROUTINE EN QLEU

FILE TRANSACTION IN THE QUEUE1

"' ALWAYS

"' s KEEP CONTINUE

END

ROUTINE SYSTEM_CONTROL

IF QUEUELl IS NOT EMPTY
REMOVE FIRST TRANSACTION FROM THE QUEUEL
CALL FIND_SET

ELSE

SCHEDULE TRANSACTION.GEN NOW
ALWAYS
END
P Y Sedesedevededededededededede do S deds Yo devedededeede devedsde dode dode de dedede e dededede e e de dede
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Tevede st yedede st Yeve st

E\ENT CHECK ‘h GL\EV CHECKI\G TRA\SACTION

| SRR DU T TN ST SR TN UL TU ST TR TR TN SUC IR SV SR SUCIR U SO SO NUR SOL ST U S SO S S S SR SO SR ORI UL STV SO )
TYeYevesedeae R e T L R e T L SR P L S PP TR IS Tt Sevedededeseatede

RESERVE STATUS_TAB AS 30

ITS_OK = 1

FOR I = 1 TO LASTNODE

DO

ITS_OK = ITS_OK * STATUS_TAB(I)

LOOP

IF ITS_OK <> 1
TIME_STAMP(CHECKING. TRANSACTION) = TIME.V
CALL SEND_ACCEPT

ELSE
CALL SEND_REJECT
REGARDLESS
RETURN
END
ey ey et e Ve ve v T ok Y de e Yo ve vedk s fe e e ve e ve st v Yo e v de ey A v ae ks v
RO'TI\E PFPORT GE\FRATOR
""" R T R R e B I D o D B S T N F e L e LI T T e D 1 4

SKIP 2 GQUTPUT LINES
PRINT 1 LINE THUS
SIMMULATION RESULT OF TWO PHASE LOCKING ALGORITHM
SKIP 1 LINE
PRINT 2 LINE THUS
I. MODEL INPUT PARAMETER
a. ODEL DESCRIPTION
PRINT 3 LINE WITH MAXLEVEL, LASTNODE, AND Dn THUS

1. LEVEL OF THE NETWORK: ok
2. NUMBER OF NODE IN NETWORK: ek
3. DATA ITEMS IN NETWORK: el

PRINT 1 LINE THUS
b. SIMMULATION PARAMETERS
PRINT 3 LINE WITH LIMITofTRANS, RATE, AND MAXBASE THLS

1. NUMBER OF TRANSACTION SIMMULATED : el
2. MEAN INTERARRIVAL TIME : *.*
3. MAXIMUM BASESET : ¥

PRINT 1 LINE THCUS
II. RESULTS OF SIMMULATION

PRINT 2 LINE WITH AVE.RESPONSE*HOURS. V*MINUTES.V, MINBASE THUS
a. THE AVERAGE RESPONSE TIME OF UPDATE TRANSACTION : v
b. THE AVERAGE NUMBER OF BASESET: i
STOP
END
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